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Self-organized criticality can be translated into the language of absorbing state phase transitions. Most
models for which this analogy is established have been investigated for their absorbing state characteristics. In
this paper, we transform the self-organized critical Oslo model into an absorbing state Oslo model and analyze
the avalanche behavior. We find that the resulting gap exponentD is consistent with its value in the self-
organized critical model. For the avalanche size exponentt an analysis of the effect of the external drive and
the boundary conditions is required.
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Self-organized criticality(SOC) refers to the tendency of
nonequilibrium dissipative systems, with many degrees of
freedom driven at a slow rate, to display scale invariance
without the fine tuning of any control parameter[1,2]. SOC
is present in manyopensystems where the activity, that is,
the presence of avalanches, transports slope particles through
the system to the boundaries where they are eventually dis-
sipated. When there is no activity, the system is in a so-called
absorbing state. The separation of relaxational and driving
time scales is achieved by adding a slope unit only when the
system is in an absorbing state. Thus the dynamics of the
model implicitly tune the slope density to values that are
associated with the transition between absorbing(inactive)
and active states.

In a closedsystem, an absorbing state(AS) phase transi-
tion refers to the transition from an absorbing(inactive) state
to an active state of the system at a critical value of a control
parameter such as the slope density[3].

In retrospect, Tang and Bak’s 1988 description of self-
organized criticality contains the ideas and features of ab-
sorbing state phase transitions[4]. This link was later clari-
fied by Vespignani and Zapperi[5] and a recipe for
transforming AS models into equivalent SOC models was

devised[6]. Start with a system displaying an AS phase tran-
sition. When the control parameter is above its critical value,
there is activity in the system. This activity should be
coupled via the dynamics to a decrease in the control param-
eter, as for example when the activity reaches the boundary.
Conversely, when the control parameter is below its critical
value, there is no activity and the system is in an absorbing
state. A process, such as the external drive, should increase
the control parameter by a small amount which may force
the system into an active state. However, this picture ignores,
for example, the problem of defining observables common to
both AS and SOC models as well as the role of finite-size
effects.

In the following, we transform the SOC Oslo model with
one open boundary into an AS Oslo model withperiodic
boundary conditions. The difficulties in this procedure are
shortly discussed. Extensive numerical simulations are ana-
lyzed with respect to scale invariance. The results lead to a
discussion on the effect of the external drive and the bound-
ary conditions.

The model[7] was inspired by an experiment, conducted
in Oslo, on slowly driven rice piles displaying self-organized
criticality [8]. A one-dimensional lattice of lengthL is char-
acterized by a slope variablezi and a critical slopezi

c as-
signed to each sitei =1,… ,L. After initialization with zi =0
and zi

c drawn randomly with equal probability from{1, 2},
the model is updated as follows:Driving: A slope unit is
added to the left-most sitei =1, such thatz1→z1+1. Top-
pling: If zi .zi

c at a sitei, one slope unit is moved to each of
the two nearest neighbors, that is,zi →zi −2 andzi±1→zi±1
+1 except when sitei =1 topples, wherez1→z1−2 andz2
→z2+1 or when sitei =L topples, wherezL→zL−1 and
zL−1→zL−1+1. After each toppling a new value forzi

c is cho-
sen randomly with equal probability from{1, 2}. The activ-
ity stops whenzi øzi

c everywhere. The model is then driven
again.

After a transient, the slope density,z=s1/Ldoi=1
L zi, fluctu-

ates about a constant value. The avalanche sizes is the total
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number of topplings after the addition of a slope unit. The
avalanche size probability density functionPss;Ld in a sys-
tem of sizeL follows simple scaling above a lower cutoffs,,

Pss;Ld = as−tGS s

bLDD for s. s,, s1d

whereD is the gap exponent(avalanche dimension) and t
the avalanche size exponent. The two constantsa andb are
metric factors. The scaling functionGsxd falls off sufficiently
fast such that all moments of the avalanche size probability
density function exist in a finite system. Forn.t−1, the
leading order of thenth moment is[9]

ksnlsLd =E
0

`

snPss;Ldds= asbLDdn+1−tgn + ¯ , s2d

wheregn depends only on the scaling functionG [10]. The
subleading terms represent, for example, corrections to scal-
ing [11] and the presence of a lower cutoff.

The numerical estimates of the exponents for the one-
dimensional SOC Oslo model are very well established with
D=2.25s2d andt=1.555s2d [7,10,12,13], independent of the
exact boundary condition ati =L [18]. In the following, we
address the key questions: Is it possible to recover these ex-
ponents, characterizing the avalanche behavior and therefore
the SOC aspect of the model, in its AS counterpart? Is the
critical slope density identical in both models?

The recipe mentioned in the introduction can be “in-
verted” to transform the SOC Oslo model into an AS version
by imposing periodic boundary conditions such that sitesi
=1 and i =L are nearest neighbors, that is, for all sites top-
pling (including i =1 and i =L), one slope unit is moved to
each of the two nearest neighbors. The resulting model is
translationally invariant, so that the original interpretation of
the slopes as height differences between columns of rice
breaks down[1,7]. The slope density increases in steps of
1/L when the system is driven. If the external drive triggers
activity, the avalanche will propagate until the systems falls
into an absorbing state again. Contrary to the SOC Oslo
model, there is no dissipation mechanism coupled to the ac-
tivity to decrease the slope density in the AS Oslo model.

Every finite system will eventually fall into an absorbing
state, provided thatzø2. However, numerically it becomes
clear that for system sizesL@1 there exists a critical slope
density, zc,2, above which the absorbing states become
practically inaccessible. Defining the activity as the density
of sites wherezi .zi

c, the activity picks up sharply at the
critical slope densityzc. However, one fundamental problem
with a definition of an instantaneous activity is the Abelian
nature of the Oslo model[14], meaning that the order in
which sites are relaxed is irrelevant. Without ana priori
order of relaxation, there can be noa priori microscopic time
scale, and the temporal behavior of the instantaneous activity
depends on the choice of microscopic time scale. It will be
argued below thatzc and all relevant observables can be
obtained while avoiding these ambiguities.

Starting from an empty configuration,z=0, slope units
are added at sitei =1 although, of course, all sites are equiva-
lent because of translational invariance. Just as in the SOC

Oslo model, slope units are added only when activity has
ceased. Thus one obtains avalanche sizes for slope densities
increasing in steps of 1/L. At small slope densities, only
small avalanches occur and until avalanches wrap around the
system, the system size cannot have any effect on the dy-
namics. In this regime, we find that the behavior of the
model essentially resembles that of the one dimensional
BTW model [1] where the avalanche size scales like the
square of the number of slope units added,szLd2.

At sufficiently large slope densities, the avalanche sizes
start to deviate from the above behavior. According to the
original arguments[5], one expects that at the AS critical
point zc the avalanche size probability density function fol-
lows simple scaling, Eq.(1). Let ksnlsz ;Ld denote thenth
moment of the avalanche size probability density function in
the AS Oslo model of sizeL at slope densityz. Ignoring
corrections to scaling and the existence of a lower cutoff in
Eq. (2), one expects that atzc there exist exponents

gn = Dsn + 1 −td s3d

such that

ksnlszc;Ld
Lgn

= abn+1−tgn for L @ 1. s4d

Note that the right hand side is independent ofL but depends
on n, the order of the moment. However, away fromzc the
ratio on the left hand side depends onL. Therefore, for alln
and three distinct system sizesL1,L2,L3, there exist a unique
slope densityzc and exponentgn such that

ksnlszc;L1d
L1

gn
=

ksnlszc;L2d
L2

gn
=

ksnlszc;L3d
L3

gn
. s5d

Graphically,zc and gn are determined by plotting, for each
system size, the rescalednth moment,ksnlsz ;Ld /Lgn, versus
the slope densityz and adjusting the exponentgn until the
graphs intersect at a single point atzc, see Fig. 1. The slope
of the graphs of the resulting exponentsgn versus the order
of the momentn determines the gap exponentD while the
intersection with then axis givest−1, see Eq.(3).

Since the moments are measured for slope densities in-
creasing in steps of 1/L, the location of the crossings re-
quires interpolation between the data points. This introduces
arbitrariness, which can, however, be reduced strongly by
choosing system sizes which are commensurable with an es-
timated critical slope density such thatzcLPN. In a prelimi-
nary simulation withL=1024, 2048, 4096, 8192 we esti-
mated zc=1.732 65 which suggestsL=1268, 2536, 5072,
10 144 as suitable system sizes. The numerical estimates pre-
sented below refer to an exponential interpolation scheme
but they are very similar to those obtained from linear inter-
polation. All systems were initialized withz=0 and gradu-
ally filled to slightly abovezc, where the average avalanche
size becomes extremely large. In each simulation, a configu-
ration slightly belowzc was recorded and the model driven
from this configuration 100 times to improve statistics. For
every system size, we average over approximately 2000in-
dependentrealizations starting fromz=0. Thus there is a
total of approximately 200 000correlatedrealizations in the
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neighborhood ofzc. The error bars reported below are based
only on the 2000independentrealizations, thereby grossly
overestimating the errors.

The numerical estimate for the critical slope densityzc is
determined as the slope density at which the graphs for dif-
ferent system sizes cross for the rescalednth moment; see
Fig. 1.

In principle, each triplet of system sizes produces an es-
timate ofzc for each moment. For example, from the cross-
ings of the triplet L=2536, 5072, 10 144 we findzc
=1.732 61s5d for n=1 andzc=1.732 61s5d for n=2; see Fig.
1. For the tripletL=1268, 2536, 5072 the resulting estimates
are zc=1.732 62s8d for n=1 and zc=1.732 59s7d for n=2.
Ignoring errors, all triplets and moments yield

1.732 57ø zc ø 1.732 62. s6d

There is no established systematic way to determine the
value ofzc in the limit L→` but from the small change in
the estimate as the system sizes are increased, it seems rea-
sonable to estimate the critical slope density by averaging
over all momentsn=1, 2, 3, 4 and all triplets yieldingzc
=1.732 60s2d.

Since crossings rely on an appropriate choice ofgn, esti-
mates of the critical slope densityzc andgn go hand in hand;
see Fig. 1. Plottinggn versus the order of the momentn
produces according to Eq.(3) an estimate forD andt. This
procedure can be performed for every triplet of system sizes.
For L=1268, 2536, 5072 we findD=2.22s23d and t
=1.07s18d while for L=2536, 5072, 10 144 the resulting ex-
ponents areD=2.28s23d andt=1.09s13d; see Fig. 2.

The errors of these exponents were estimated by standard
error propagation. Just as for the estimate ofzc, the proce-
dure only provides exponents for a particular set of system
sizes. However, even the preliminary simulations withL
=1024, 2048, 4096, 8192 are fully compatible with the ex-
ponentsD andt reported above. Based on all four possible

triplets of system sizes, it therefore seems justified to esti-
mateD=2.25s8d andt=1.08s5d, in the limit L→`.

Table I summarizes the numerical estimates for the criti-
cal slope densities and exponents for the AS and boundary
driven SOC Oslo model.

We are not aware of a systematic study of theaverage
slope densitykzlsLd in the SOC Oslo model. However, re-
sults from simulations of systems sizesL=1024, 2048, 4096,
8192 are consistent withzc−kzlsLd~L−x with x<0.7 and
zc=1.7326s3d, where the error bar is based on visual inspec-
tion. Similarly for the bulk driven model(see below) we find
zc=1.734s2d.

It is surprising how well thenonuniversalslope density of
the SOC Oslo model is reproduced by the AS model. This,
however, is exactly what is predicted by the simple mecha-
nism put forward by Vespignani and Zapperi[5].

The avalanche size exponentt=1.08s5d in the AS Oslo
model is inconsistent with the valuet=1.555s2d in the SOC
Oslo model. However, the gap exponentD=2.25s8d in the
AS Oslo model is consistent with the valueD=2.25s2d re-
ported in the literature for the SOC Oslo model[7,10,12,13].

FIG. 1. The logarithm of the rescaled momentsksnlsz ;Ld /Lgn

versus the slope densityz for n=1, 2. The exponential interpola-
tions between the data points for increasing system sizes are marked
with lines of increasing dash length. For the tripletL=2536, 5072,
10 144, the lower set of graphs forn=1 intersect in a single point at
zc=1.732 608 withg1=2.064 and the upper set of graphs forn=2
intersect atzc=1.732 609 withg2=4.342.

FIG. 2. The estimated exponentsgn vs the ordern of the mo-
ment for the tripletsL=1268, 2536, 5072(open squares) and L
=2536, 5072, 10 144(open circles). Assuming simple finite-size
scaling it follows from Eq.(3) that the slope of the graphs is the gap
exponentD while the intersection with then axis ist−1; see inset
(dotted lines indicate magnified region). Linear regression yields
D=2.22s23d ,t=1.07s18d for the first triplet (dashed line) and D
=2.28s23d ,t=1.09s13d for the second triplet(solid line).

TABLE I. The critical slope densityzc, the gap exponentD, the
avalanche size exponentt, and the exponentg1 in the AS Oslo
model (all errors based on averaging over the four triplets), SOC
Oslo model driven at the boundary[7,10,12,13] or in the bulk[15].
For SOC Oslo models, a simple conservation argument in the sta-
tionary regime determinesg1.

Quantity

Oslo model zc D t g1

AS 1.73260(2) 2.25(8) 1.08(5) 2.07(6)

SOC, boundary driven 1.7326(3) 2.25(2) 1.555(2) 1

SOC, bulk driven 1.734(2) 2.25(3) 1.10(3) 2
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While the former result questions the one-to-one correspon-
dence between the SOC and AS Oslo model, one might un-
derstand this discrepancy as follows: The exponent actually
characterizing the Oslo model is the gap exponentD. The
gap exponent is deeply rooted in the model and is also
present in the corresponding field theory[12,16]. In contrast,
in the SOC Oslo model, the avalanche size exponentt is
determined by the gap exponentD via the scaling relation
Eq. (3), sinceg1 can be derived by simple conservation ar-
guments in the stationary regime; driving the SOC Oslo
model at any fixed,absoluteposition, such asi =1 in the
boundary driven SOC Oslo model described above, leads to
g1=1, implying Ds2−td=1. Driving the model randomly in
the bulk with slope units or at anyrelative position, such as
i =L /2, leads tog1=2, implying Ds2−td=2. The latter scal-
ing law producest=1.111s8d from D=2.25s2d, well compat-
ible with the result found in the AS Oslo model. In fact, the
exponentsD=2.25s3d and t=1.10s3d have been reported in
the literature for a variant of the bulk-driven Oslo model
[15], but interpreted as evidence against the bulk-driven SOC
Oslo model being in the same universality class as the
boundary driven SOC Oslo model.

Contrary to the SOC Oslo models, there exists no conser-
vation argument to determine the value ofg1 in the AS Oslo
model. However, because of the periodic boundaries, the AS
Oslo model seems to be related to the bulk-driven SOC Oslo
model rather than the original boundary-driven SOC Oslo
model. Therefore the discrepancy in the avalanche size ex-
ponentt in the AS Oslo model with respect to the SOC Oslo
model driven at any fixed position might very well be caused
by the difference in the external drive and the resulting scal-

ing relations. In fact, the AS Oslo model analyzed above
seems to be a perfect AS version of an SOC Oslo model
driven in the bulk at, say,i =L /2.

Since the SOC Oslo model is equivalent to an interface
depinning model[12,16], the latter should also have an
equivalent AS version, see discussion in Ref.[17]. It is also
conjectured that the train model is in the same universality
class as the Oslo model[12]. Whether imposing periodic
boundary conditions on the train model will transform it into
its AS analog is an intriguing question which is beyond the
scope of this brief report.

In conclusion, we have transformed the SOC Oslo model
into an AS Oslo model. We have numerically determined the
critical slope densities and obtained numerical estimates for
the gap exponentD and avalanche size exponentt charac-
terizing the avalanche behavior assuming simple finite-size
scaling. The critical slope densities and the gap exponents
are identical in the two models. However, the avalanche size
exponents are different. The question remains whether one
can construct a “proper” AS Oslo model, corresponding to
the boundary driven SOC Oslo model.
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