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Avalanche behavior in an absorbing state Oslo model
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Self-organized criticality can be translated into the language of absorbing state phase transitions. Most
models for which this analogy is established have been investigated for their absorbing state characteristics. In
this paper, we transform the self-organized critical Oslo model into an absorbing state Oslo model and analyze
the avalanche behavior. We find that the resulting gap expdbeist consistent with its value in the self-
organized critical model. For the avalanche size exponent analysis of the effect of the external drive and
the boundary conditions is required.
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Self-organized criticalitSOQ refers to the tendency of devised[6]. Start with a system displaying an AS phase tran-
nonequilibrium dissipative systems, with many degrees obition. When the control parameter is above its critical value,
freedom driven at a slow rate, to display scale invariancéhere is activity in the system. This activity should be
without the fine tuning of any control paramefér2]. SOC  coupled via the dynamics to a decrease in the control param-
is present in manppensystems where the activity, that is, eter, as for example when the activity reaches the boundary.
the presence of avalanches, transports slope particles throu§@nversely, when the control parameter is below its critical
the system to the boundaries where they are eventually digalue, there is no activity and the system is in an absorbing
sipated. When there is no activity, the system is in a so-callegtate. A process, such as the external drive, should increase
absorbing state. The separation of relaxational and driving’€ control parameter by a small amount which may force
time scales is achieved by adding a slope unit only when thd'® system into an active state. However, this picture ignores,
system is in an absorbing state. Thus the dynamics of th rﬁxampleathe proble(;n IOf def|n|r|1|g obshervatl)lesfc?mmon to
model implicitly tune the slope density to values that aree?rgcé‘s and SOC models as well as the role of finite-size
gizoggit\?g Svt\/;;ttgst_he transition between absortingctive In the following, we transform the SOC Oslo' moc_del 'With

In a closedsystem, an absorbing sta®@S) phase transi- one open boundary into an AS Oslo model witperiodic

. f h ition f bsorbii ; boundary conditions. The difficulties in this procedure are
tion refers to the transition from an absorbifigactive stateé g4y discussed. Extensive numerical simulations are ana-

to an active state of the system at a critical value of a control,; e with respect to scale invariance. The results lead to a

parameter such as the slope denf8y o discussion on the effect of the external drive and the bound-
In retrospect, Tang and Bak's 1988 description of self-ary conditions.

organized criticality contains the ideas and features of ab- The model[7] was inspired by an experiment, conducted
sorbing state phase transitiofd. This link was later clari- in Oslo, on slowly driven rice piles displaying self-organized
fied by Vespignani and Zapperf5] and a recipe for criticality [8]. A one-dimensional lattice of lengthis char-
transforming AS models into equivalent SOC models wasacterized by a slope variabte and a critical sloper’ as-
signed to each site=1,...,L. After initialization with z=0
andz® drawn randomly with equal probability frorfi, 2},
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number of topplings after the addition of a slope unit. TheOslo model, slope units are added only when activity has
avalanche size probability density functids;L) in a sys- ceased. Thus one obtains avalanche sizes for slope densities
tem of sizelL follows simple scaling above a lower cutaff,  increasing in steps of 1/ At small slope densities, only

small avalanches occur and until avalanches wrap around the
P(s:L) :as‘7g<iD) for s>, (1)  System, the system size cannot have any effect on the dy-
namics. In this regime, we find that the behavior of the
model essentially resembles that of the one dimensional

BTW model [1] where the avalanche size scales like the
square of the number of slope units added,)?.

At sufficiently large slope densities, the avalanche sizes
art to deviate from the above behavior. According to the
original argumentg5], one expects that at the AS critical
point . the avalanche size probability density function fol-

* N lows simple scaling, Eq(l). Let (s")({;L) denote thenth
(sHML) :J s'P(s;L)ds=a(bL)™ g+ -+, (2 moment of the avalanche size probability density function in
0 the AS Oslo model of sizé at slope density. Ignoring
whereg, depends only on the scaling functigh[10]. The  corrections to scaling and the existence of a lower cutoff in
subleading terms represent, for example, corrections to scakqg. (2), one expects that &t there exist exponents
ing [11] and the presence of a lower cutoff.

whereD is the gap exponentavalanche dimensigrand
the avalanche size exponent. The two constardsdb are
metric factors. The scaling functiagi(x) falls off sufficiently
fast such that all moments of the avalanche size probabilit;gt
density function exist in a finite system. Far>7-1, the
leading order of theath moment ig[9]

The numerical estimates of the exponents for the one- W=D(n+1-7) 3)
dimensional SOC Oslo model are very well established withsuch that
D=2.252) and r=1.5552) [7,10,12,13, independent of the
exact boundary condition atL [18]. In the following, we (Heil) = ab™lg, for L> 1. (4)
address the key questions: Is it possible to recover these ex- L7 "

ponents, characterizing the avalanche behavior and therefor\?ote that the right hand side is independent dfut depends

e L oo %n n, the order of the moment. However, away fragmthe
critical slope density identical in both models? ratio on the left hand side depends lonTherefore, for alh

The recipe mentioned in the introduction can be ‘“in- e : . .
verted” to transform the SOC Oslo model into an AS versionand three distinct system sizeg,L, Ls, there exist a unique

by imposing periodic boundary conditions such that sites slope densityt and exponenty, such that
=1 andi=L are nearest neighbors, that is, for all sites top- (ML) (SNl (SN Ls)
pling (includingi=1 andi=L), one slope unit is moved to L2n - L2n - Ln (5)
each of the two nearest neighbors. The resulting model is ! 2 3
translationally invariant, so that the original interpretation of Graphically,{, and vy, are determined by plotting, for each
the slopes as height differences between columns of ricgystem size, the rescaleth moment(s")(¢;L)/L™, versus
breaks down1,7]. The slope density increases in steps ofthe slope density and adjusting the exponent, until the
1/L when the system is driven. If the external drive triggersgraphs intersect at a single pointéat see Fig. 1. The slope
activity, the avalanche will propagate until the systems fallsof the graphs of the resulting exponenisversus the order
into an absorbing state again. Contrary to the SOC Oslof the momentn determines the gap exponebtwhile the
model, there is no dissipation mechanism coupled to the adntersection with then axis givest—1, see Eq(3).
tivity to decrease the slope density in the AS Oslo model. Since the moments are measured for slope densities in-
Every finite system will eventually fall into an absorbing creasing in steps of 1/ the location of the crossings re-
state, provided that=<2. However, numerically it becomes quires interpolation between the data points. This introduces
clear that for system sizds>1 there exists a critical slope arbitrariness, which can, however, be reduced strongly by
density, {.<2, above which the absorbing states becomechoosing system sizes which are commensurable with an es-
practically inaccessible. Defining the activity as the densitytimated critical slope density such that. € N. In a prelimi-
of sites wherez>7’, the activity picks up sharply at the nary simulation withL=1024, 2048, 4096, 8192 we esti-
critical slope density.. However, one fundamental problem mated {.=1.732 65 which suggests=1268, 2536, 5072,
with a definition of an instantaneous activity is the Abelian10 144 as suitable system sizes. The numerical estimates pre-
nature of the Oslo mod€l14], meaning that the order in sented below refer to an exponential interpolation scheme
which sites are relaxed is irrelevant. Without anpriori but they are very similar to those obtained from linear inter-
order of relaxation, there can be agriori microscopic time  polation. All systems were initialized wit=0 and gradu-
scale, and the temporal behavior of the instantaneous activiglly filled to slightly above(,, where the average avalanche
depends on the choice of microscopic time scale. It will besize becomes extremely large. In each simulation, a configu-
argued below that. and all relevant observables can beration slightly below{, was recorded and the model driven
obtained while avoiding these ambiguities. from this configuration 100 times to improve statistics. For
Starting from an empty configuratiod=0, slope units every system size, we average over approximately 2000
are added at sitie=1 although, of course, all sites are equiva- dependentrealizations starting front=0. Thus there is a
lent because of translational invariance. Just as in the SO®tal of approximately 200 000orrelatedrealizations in the

067101-2



BRIEF REPORTS PHYSICAL REVIEW EO0, 067101(2004

[0.2

S [ T R T Y SO I T RO AN S
1.73256 1.73258 1.73260 1.73262 1.73264

FIG. 2. The estimated exponenig vs the ordem of the mo-
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FlG't;' Tlhe Ioganthmfof th_elrezsc_?lﬁd momemt@'.)(lgth)/L | ment for the tripletsL=1268, 2536, 50720open squargsand L
versus the slope densigfor n=1, 2. The exponential interpola- _ 536, 5072, 10 144o0pen circlex Assuming simple finite-size

tic_)ns pehNeep the da_1ta points for increasing sy;tem sizes are marké aling it follows from Eq(3) that the slope of the graphs is the gap
with lines of increasing dash length. For the triplst2536, 5072, exponentD while the intersection with tha axis is7—1; see inset

10_114;1ét2hgolgwe_trhset_02f ggiphs;ntil Intersect Ln ?smglﬁ pf(:;];at (dotted lines indicate magnified regioriLinear regression yields
=1, Withy, =<. an € upper set of grapns D=2.2223),7=1.0118) for the first triplet (dashed ling and D

intersect al;=1.732 609 withy,=4.342. =2.2823),7=1.0913) for the second tripletsolid line).

neighborhood of. The error bars reported below are basecjtriplets of system sizes, it therefore seems justified to esti-

only on the 200Gndependentealizations, thereby grossly - H_» 258) and 7=1.085), in the limit Lo
overestimating the errors. ' ' ' ’

The numerical estimate for the critical slope dengitys
determined as the slope density at which the graphs for di

ferent system sizes cross for the rescabd moment; see We are not aware of a systematic study of theerage

Fig. 1. . .

gIn principle, each triplet of system sizes produces an es§|0pe den5|.t3(§>(L_) in the SOC OS!O model. However, re-
timate of {. for each moment. For example, from the cross-SUItS from S|mu[at|ons O.f systems SIZ|E_SX 10.24’ 2048, 4096,
ings of the triplet L=2536, 5072, 10144 we find, OLo2 &€ consistent witd,—(5)(L)exL™ with x=~0.7 and
=1.732 615) for n=1 andZ,=1.732 615) for n=2; see Fig. §.C:1.7.32.653), where the error bar is based on visual inspec-
1. For the tripletL=1268, 2536, 5072 the resulting estimatestion: Similarly for the bulk driven modekee belowwe find
are £.=1.732 628) for n=1 and {,=1.732597) for n=2.  c=1.7342).

Table | summarizes the numerical estimates for the criti-
f(_:al slope densities and exponents for the AS and boundary
driven SOC Oslo model.

Ignoring errors, all triplets and moments yield It is surprising how well theonuniversaklope density of
’ the SOC Oslo model is reproduced by the AS model. This,
1.73257< (< 1.732 62. (6) however, is exactly what is predicted by the simple mecha-

] ] ) . nism put forward by Vespignani and Zappgsi.
There is no established systematic way to determine the The avalanche size exponent1.085) in the AS Oslo
value off; in the limit L —c but from the small change in gl is inconsistent with the value= 1.5552) in the SOC

the estimate as the system sizes are increased, it seems reg5 model. However. the gap expondt2.258) in the
sonable to estimate the critical slope density by averaging\s Oslo model is con,sistent with the vall=2.252) re-

2\/1e;3azll6r£§)mentm:1, 2,3, 4 and all triplets yielding, ported in the literature for the SOC Oslo mo¢ie|10,12,13.

Since crossings rely on an appropriate choiceypfesti-
mates of the critical slope density and vy, go hand in hand,;
see Fig. 1. Plottingy, versus the order of the moment
produces according to E¢3) an estimate foD and 7. This
procedure can be performed for every triplet of system size
For L=1268, 2536, 5072 we findb=2.2223) and 7
=1.0718) while for L=2536, 5072, 10 144 the resulting ex-

TABLE I. The critical slope density,, the gap exponerid, the
avalanche size exponent and the exponeny, in the AS Oslo
model (all errors based on averaging over the four triple®0C
Oslo model driven at the boundafy,10,12,13 or in the bulk[15].
$or SOC Oslo models, a simple conservation argument in the sta-
tionary regime determineg,.

ponents ar&©=2.2823) and 7=1.0913); see Fig. 2. Quantity

The errors of these exponents were estimated by standaggl |, model . D ; 5
error propagation. Just as for the estimate/gfthe proce- ¢ !
dure only provides exponents for a particular set of systenAS 1.732602) 2.258) 1.085) 2.076)
sizes. However, even the preliminary simulations with soc, boundary driven 1.7329 2.252) 1.5552) 1
=1024, 2048, 4096, 8192 are fully compatible with the ex-goc. pulk driven 173@ 2.253) 1.103) 2

ponentsD and 7 reported above. Based on all four possible
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While the former result questions the one-to-one corresponing relations. In fact, the AS Oslo model analyzed above
dence between the SOC and AS Oslo model, one might urseems to be a perfect AS version of an SOC Oslo model
derstand this discrepancy as follows: The exponent actuallgriven in the bulk at, say,=L/2.

characterizing the Oslo model is the gap expor2nfThe Since the SOC Oslo model is equivalent to an interface
gap exponent is deeply rooted in the model and is alsglepinning model[12,16, the latter should also have an
present in the corresponding field the¢t?,16. In contrast, ~€quivalent AS version, see discussion in R&f]. It is also

in the SOC Oslo model, the avalanche size exponeist ~ conjectured that the train model is in the same universality
determined by the gap exponeBtvia the scaling relation class as the Oslo mod¢l2]. Whether imposing periodic

Eq. (3), sincey; can be derived by simple conservation ar- boundary conditions on the train model will transform it into

guments in the stationary regime; driving the SOC Oslo'ts AS analog is an intriguing question which is beyond the

model at any fixedabsoluteposition, such as=1 in the ScoPe of this brief report.

boundary driven SOC Oslo model described above, leads tl% t(l)na%OAngng;?g’mvgzgla\@etﬁgvséor:?ggrggaens?jgt(g;li?]g:jot(:]eel
v,=1, implying D(2-7)=1. Driving the model randomly in ' Y

the bulk with slope units or at anglative position, such as critical slope densities and obtained numerical estimates for
. Lo ’ h Xpon nd avalanche size exponentharac-
i=L/2, leads toy; =2, implying D(2-7)=2. The latter scal- the gap exponerD and avalanche size exponentharac

. B B terizing the avalanche behavior assuming simple finite-size
ing law produces=1.1118) from D=2.252), well compat-  gcajing. The critical slope densities and the gap exponents

ible with the_result found "lthe AS Oslo model. In fact, the 4re jgentical in the two models. However, the avalanche size
exponentsD=2.253) and r=1.103) have been reported in gynonents are different. The question remains whether one

the literature for a variant of the bulk-driven Oslo model capy construct a “proper” AS Oslo model, corresponding to
[15], butinterpreted as evidence against the bulk-driven SOGhe poundary driven SOC Oslo model.

Oslo model being in the same universality class as the
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model rather than the original boundary-driven SOC Osldng their visit. N.R.M. is very grateful to the Beit Foundation
model. Therefore the discrepancy in the avalanche size esxer the receipt of a fellowship. K.C., O.P., and G.P. gratefully
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